what is pseudocode
What is Pseudocode
Pseudocode is an informal high-level description of the operating principle of a computer program or other algorithm.
It uses the structural conventions of a normal programming language, but is intended for human reading rather than machine reading. Pseudocode typically omits details that are essential for machine understanding of the algorithm, such as variable declarations, system-specific code and some subroutines. The programming language is augmented with natural language description details, where convenient, or with compact mathematical notation. The purpose of using pseudocode is that it is easier for people to understand than conventional programming language code, and that it is an efficient and environment-independent description of the key principles of an algorithm. It is commonly used in textbooks and scientific publications that are documenting various algorithms, and also in planning of computer program development, for sketching out the structure of the program before the actual coding takes place.
No standard for pseudocode syntax exists, as a program in pseudocode is not an executable program. Pseudocode resembles, but should not be confused with skeleton programs which can be compiled without errors. Flowcharts, drakon-charts and Unified Modeling Language (UML) charts can be thought of as a graphical alternative to pseudocode, but are more spacious on paper.
Application
Textbooks and scientific publications related to computer science and numerical computation often use pseudocode in description of algorithms, so that all programmers can understand them, even if they do not all know the same programming languages. In textbooks, there is usually an accompanying introduction explaining the particular conventions in use. The level of detail of the pseudo-code may in some cases approach that of formalized general-purpose languages.
A programmer who needs to implement a specific algorithm, especially an unfamiliar one, will often start with a pseudocode description, and then "translate" that description into the target programming language and modify it to interact correctly with the rest of the program. Programmers may also start a project by sketching out the code in pseudocode on paper before writing it in its actual language, as a top-down structuring approach, with a process of steps to be followed as a refinement.
Machine compilation of pseudocode style languages
Natural language grammar in programming languages
Various attempts to bring elements of natural language grammar into computer programming have produced programming languages such as HyperTalk, Lingo, AppleScript, SQL, Inform and to some extent Python. In these languages, parentheses and other special characters are replaced by prepositions, resulting in quite talkative code. These languages are typically dynamically typed, meaning that variable declarations and other boilerplate code can be omitted. Such languages may make it easier for a person without knowledge about the language to understand the code and perhaps also to learn the language. However, the similarity to natural language is usually more cosmetic than genuine. The syntax rules may be just as strict and formal as in conventional programming, and do not necessarily make development of the programs easier.
Mathematical programming languages
An alternative to using mathematical pseudocode (involving set theory notation or matrix operations) for documentation of algorithms is to use a formal mathematical programming language that is a mix of non-ASCII mathematical notation and program control structures. Then the code can be parsed and interpreted by a machine.
Several formal specification languages include set theory notation using special characters. Examples are:
Z notation
Vienna Development Method Specification Language (VDM-SL).
Some array programming languages include vectorized expressions and matrix operations as non-ASCII formulas, mixed with conventional control structures. Examples are:
A programming language (APL), and its dialects APLX and A+.
MathCAD.
Comments
Post a Comment